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Abstract

The aim of the present work was to develop a method for predicting the phase behaviour of four component
systems consisting of oil, water and two surfactants from a limited number of screening experiments. Investigations
were conducted to asses the potential of artificial neural networks (ANNs) with back-propagation training algorithm
to predict the phase behaviour of four component systems. Three inputs only (percentages of oil and water and HLB
of the surfactant blend) and four outputs (oil in water emulsion, water in oil emulsion, microemulsion, and liquid
crystals containing regions) were used. Samples used for training represented about 15% of the sampling space within
the tetrahedron body. The network was trained by performing optimization of the number and size of the weights for
neuron interconnections. The lowest error was obtained with 15 hidden neurons and after 4500 training cycles. The
trained ANN was tested on validation data and had an accuracy of 85.2–92.9%. In most cases the errors in the
prediction were confined to points lying along the boundaries of regions and for the extrapolated predictions outside
the ANNs ‘experience’. This approach is shown to be highly successful and the ANNs have proven to be a useful tool
for the prediction of the phase behaviour of quaternary systems with less experimental effort. © 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Systems containing oil, water and surfactant are
of interest as drug delivery systems, or as bases for
cosmetics. A diverse range of colloidal systems and
coarse dispersions can be obtained depending on
ratios of the components. Emulsions, microemul-
sions, creams and lyotropic liquid crystals are some

examples. One of the most convenient methods to
study the phase behaviour of such systems is by
constructing a phase diagram using a Gibbs trian-
gle [1]. However as the formulation may contain
more than three components the complete phase
behaviour cannot be represented using a triangular
diagram. The phase behaviour of a four compo-
nent mixture at fixed pressure and temperature can
be represented using a tetrahedron. Full character-
ization of such systems is a tedious task requiring
a large number of experiments [2].
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Artificial neural networks (ANNs) are finding
increasing applications in areas of prediction [3–
5]. Indeed Richardson et al [6] reported on the use
of ANNs to predict the pseudo-ternary phase
diagrams for four component microemulsion sys-
tems using only a range of four computed physic-
ochemical properties for the cosurfactants
employed. The use of ANNs seems to be most
suitable for dealing with complex multivariate
nonlinear relationships. Once trained ANNs can
be used to predict outputs from new sets of input
data. These features make ANNs suitable for
solving problems in the area of optimization of
formulations in pharmaceutical product
development.

The paper reports on the use of ANNs to
characterize four component quaternary systems
consisting of oil, water and two surfactants to
minimize experimental effort.

1.1. Neural networks

ANNs are mathematical systems that mimic the
way in which the human brain works [7]. They
consist of fully interconnected processing units
called neurons organized in layers. There is al-
ways one input and one output layer and there
should be at least one hidden layer [8]. The use of
a hidden layer enables ANNs to describe nonlin-
ear systems. A problem in constructing an ANNs
is to find the optimal number of hidden nodes.
We have used a supervised network with back-
propagation training algorithm [9] and its mode
of operation is presented schematically in Fig. 1.
The information of the model that is passed from
one processing element to another is contained in
the connections between neurons in successive
layers as weights and in the bias values of a
neuron (neuron activation threshold). The net-
work is trained by optimizing of the weight for
each node interconnection and bias term, until the
output values at the output layer neurons are
close to the actual outputs. The output of the
neuron is related to the summed inputs by a
nonlinear transfer function. The most commonly
used function in back-propagation neural net-
works is a sigmoidal function. The optimization is
therefore non-linear and consists of iteratively

varying the weights until the output values for
each sample are close to the target values. The
error in prediction is then propagated through the
system and the interunit connections are changed
to minimize the error in the prediction. This pro-
cess is continued with multiple training sets until
the error is minimized across the sets. The mean
squared error of the network (MSE) is defined as
the squared difference between the target values t
and the output y of the output neurons:

MSE=
1

p ·m
%
p

k=1

%
m

l=1

(ykl− tkl)2

where p is the number of training sets, and m is
the number of output neurons in the neural net-
work. During training, neural techniques need to
have some way of evaluating their own perfor-
mance. Since they are learning to associate inputs
with outputs, evaluating the performance of the
network on the training data may not produce the
best results. If a network is trained for too long, it
will overtrain and will lose the ability to general-
ize. Thus, three types of data sets are used: train-
ing data (to train the network), test data (to
monitor the performance of the neural network
during training), and validation data (to measure
the performance of a trained application).

Fig. 1. General scheme of a processing unit or neuron. Yj ; wij

is the weight from neuron I to neuron j; biasj is the bias of
neuron j ; Netj is the sum of weighted inputs of neurons j;
f(Netj) is the transfer function of neuron j.
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Fig. 2. Four component tetrahedron illustrating the position of the samples formulated at different HLB values. HLBs are shown
on the SML-PMSO axis. W: water; EO: ethyl oleate; SML: sorbitan mono laurate; PMSO: polyoxyethylene 20 sorbitan monooleate.

2. Experimental

2.1. Materials and methods

2.1.1. Materials
Ethyl oleate (EO) was used as the oil compo-

nent (Crodamol EO). Sorbitan mono laurate
(SML) as surfactant component 1 (Crill 1,
HLB=8.6) and polyoxyethylene 20 sorbitan
monooleate (PSMO) as surfactant component 2
(Crillet 4 super, HLB=15) were mixed to give a
range of HLB values. EO, SML, and PSMO was
obtained form Croda Surfactants New Zealand as
free samples. Sudan III (BDH Chemicals Poole,
UK), and methylene blue (Koch-Light Laborato-
ries, Colnbrook Bucks, England) were used as
lipophilic and hydrophilic dyes respectively.
Deionised water was used.

2.1.2. Methods

2.1.2.1. Apparatus. Phase contrast and polarized
light microscopy were performed using a Nikon

Optiphot microscope (Nikon, Tokyo, Japan).
Electrical conductivity measurements were carried
out using a Riac CM/100 conductivity meter, with
a YSI 3418 electrode (YSI, Yellow Springs, USA).

2.1.2.2. Artificial neural networks simulator soft-
ware. MS-Windows based ANNs simulator soft-
ware, NNMODEL Version 1.404 (Neural Fusion)
was used. Calculations were performed on a 586
personal computer.

2.1.2.3. Sample preparation. Fig. 2 shows a first
set of samples, representing the cuts made
through the phase tetrahedron. The two surfac-
tants were mixed to give the following SML:
PSMO mass ratios: 1.0:0.0, 0.9:0.1, 0.8:0.2,
0.7:0.3, 0.6:0.4, 0.5:0.5, 0.4: 0.6, 0.3:0.7, 0.2:0.8,
0.1:0.9, and 0.0:1.0 with corresponding HLB val-
ues of 8.6, 9.2, 9.9, 10.5, 11.2, 11.8, 12.4, 13.1,
13.7, 14.4, and 15, respectively. The various SML:
PSMO blends were heated to 50°C and stirred at
high speed for 5 min on a hot plate magnetic
stirrer. After cooling to room temperature,
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aliquots of each blend were mixed with EO in 1:1
mass ratio. The mixtures were stirred vigorously
using a magnetic stirrer for 5 min. To each system
water was added to give water concentrations in
the range of 0–95% (w/w) at 1–5% increments.
Samples were vortexed and left overnight to equi-
librate, then were characterized by visual appear-
ance, microscopical examination, conductivity
testing, staining, and dilution. Clear, isotropic,
one-phase systems were characterized as microe-
mulsion (ME); systems showing birefringence
with a typical oily streak, maltese cross or fan
shaped texture (Fig. 3), were characterized as
systems containing a lamellar mesophase (LC).
The LC systems were either one-phase systems
(pure lamellar mesophase) or two-phase systems
with lamellar mesophase and either ME or an
aqueous continuous phase. Water continuous
coarse dispersions (Fig. 4) were classified as o/w
emulsions (o/w EM) and oil continuous coarse

dispersions were categorized as w/o emulsions
(w/o EM). The w/o EM were found to be very
unstable, and cracking occurred usually within
2–5 min. The ME were stable for at least six
months.

To construct a pseudoternary phase diagram, a
second set of samples was prepared as above at a
fixed mass ratio of the two surfactants of 4:6
(HLB=12.4) (Fig. 5a). The results were plotted
using a Gibbs triangle (Fig. 5b) and the percent-
age occupied by each region was determined by a
cut and weigh method [10].

3. Results and discussion

3.1. Artificial neural networks structure and
training

The composition of a network is related to both
the number and the size of the weights. Model

Fig. 3. Polarized light micrograph showing the lamellar mesophase with the characteristic oily streaks and maltese cross texture.
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Fig. 4. Phase contrast micrograph showing an emulsion (o/w EM).

selection is concerned with determining the opti-
mal number of hidden units and the weights for
these neurons. The number of connections in the
network depends upon the number of neurons in
the hidden layer. In the training phase the infor-
mation of the training data is transformed to
weight values of the connections. Therefore, the
number of connections might have a significant
effect on the network performance. Since there
are no theoretical principles for choosing the
proper network topology different structures were
tested. The ANN was trained using a different
number of hidden neurons (5–25) and training
cycles (0–6000).

At the start of each training run, both weights
and biases were initialized with random values.
During training, modifications of the network
weights and biases were made by back-propaga-
tion of error. The magnitudes of the changes for

the weights and biases in the hidden and output
layer were controlled by the error signal in each
layer.

To compare the predictive power of the differ-
ent ANN models, mean squared errors were cal-
culated. Since the test set error is usually a better
measure of performance than the training error,
while the network was being optimized, :10% of
the experimental data, called a test set, was fed
forward through the network to evaluate the
trained network. The performance of the network
on this test set gives a reasonable estimate of the
ANNs prediction ability [7]. The lowest testing
error was obtained with 15 hidden neurons and
after 4500 training cycles (Table 1).

In order to examine the generalization ability of
the best ANNs model, 180 additional experiments
were performed to interrogate the model. Forty
five sets of data were systematically selected from
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each of the four pseudoternary phase diagrams at
HLB values 9, 11.5, 13, and 14.7.

3.2. Artificial neural networks training and testing
data

Samples representing the phase tetrahedron
cuts (8 samples at each cut) at fixed 1:1 oil surfac-
tant blend mass ratio (Fig. 2), as well as of the
phase diagram (40 samples) at HLB 12.4 (Fig. 5),
were used as training data providing 128 input-
output pairs. A further 15 samples were randomly
selected from these cuts as testing data. Sampling
of the tetrahedron for full characterization would
require about 1000 samples, thus about 15% of
the space was sampled. The inputs were percent-
age of oil, percentage of water, and HLB of the
surfactant blend. The outputs were the four dif-
ferent outcomes: ME, LC, w/o EM, and o/w EM.
Samples were coded as +1 to signify the presence
of a particular system, and −1 to indicate its
absence. Thus, a region consisting of ME would
have values of +1, −1, −1, −1; pure LC was
−1, +1, −1, −1; w/o EM was −1, −1, +1,
−1; and o/w EM was categorized as −1, −1,
−1, +1. ME and LC would have values of +1,

+1, −1, −1, whereas LC and o/w EM were
categorized as −1, +1, −1, +1. The coexis-
tence of w/o EM and o/w EM were classified as
−1, −1, +1, +1. A perfectly trained network
should recover such values for perfect phase clas-
sification. Any deviation from +1 and −1
would reflect error in the classification process.

3.3. Prediction of the phase nature based on
o6erall trained network

Fig. 6 shows the predicted pseudoternary phase
diagrams at HLB 9, 11.5, 13, and 14.7. The ANN
was able to classify regions containing multiple
phases. For example the LC region shown in Fig.
6 consist of monophasic LC region (−1, +1,
−1, −1), an aqueous LC dispersion (−1, +1,
−1, +1) and LC dispersion in ME (+1, +1,
−1, −1). At HLB 9, there were no LC or ME
regions. Rather the whole triangular area was
occupied by coarse dispersions of either o/w EM
(36% of the total area of the phase triangle), or
w/o EM (64%). At HLB 11.5, the predicted pseu-
doternary phase diagram revealed the presence of
an appreciable ME region covering about 19% of
the total triangle area. The maximum water solu-

Fig. 5. (a) Constructed pseudoternary phase diagram locus within the tetrahedron body; (b) the pseudoternary phase diagram at
HLB 12.4 W=100% water; O=100% EO; S =100% SML: PSMO.
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Table 1
Testing MSE using different numbers of hidden neurons and training cycles

Number of training cyclesNumber of hidden neurons

600050003000 40001000 2000

0.202 0.2065 0.162 0.162 0.173 0.190
0.1530.1520.14610 0.1350.128 0.130
0.0790.07815 0.114 0.085 0.080 0.078
0.1620.16220 0.142 0.150 0.149 0.153

0.151 0.14825 0.1390.137 0.1270.150

bilized by ME was predicted to be :18%. An LC
region (28%) was detectable at this HLB. Regard-
ing the w/o EM region (10%), theory would pre-
dict that its area at HLB 11.5 would be less than
that at HLB 9, which is in agreement with the
ANN prediction. At HLB 13, the percentages
occupied by the four different regions were ME
17.5, LC 45.5, o/w EM 32, and w/o EM 5%.
There was a pronounced increase in the LC area
compared to HLB 11.5. This can be explained by
the increased mass fraction of PSMO in the sur-
factant blend. PSMO is a polyethyleneoxide con-
taining surfactant, and it is well established that
these surfactants have a tendency to form
mesophases [11]. Predictions at HLB 14.7 yielded
the following ratios: ME 0.7, LC 88.3, o/w EM 9,
and w/o EM 2%. The pure ME region was pre-
dicted to be very small, the dominant region being
LC. This predicted behaviour might be explained
with the fact that the surfactant blend at this HLB
mainly consists of PSMO.

Knowledge of the physicochemical properties
of the four components comprising these systems
would allow only qualitative guessing in terms of
the possible phase behaviour. On the contrary
ANNs utilisation enables quantitative predictions.

For the systems included in the training set
data, the different regions were reproduced with a
coefficient of correlation ranging from 0.886 for
pure LC to 0.978 for o/w EM with a mean value
of 0.9453. The monophasic LC region was very
limited and this is probably the reason for the
relatively low coefficient of correlation of 0.886.

For the validation data set, various critical
values (0, 90.25, 90.50, and 90.75) were used
to classify these data. That is, if an output value

was \0 the corresponding phase was assumed to
be present and if B0 then absent. In the most
stringent case, a phase was assumed present if the
output was \0.75 and absent if B−0.75. Val-
ues in the range between −0.75 and 0.75 were
considered unclassifiable. In this way it was hoped
to modify the reliability of the predictions. ANNs
generalized the phase behavior with accuracies of
85.2–92.9%, depending on the output critical val-
ues used for the classification (Table 2). Predic-
tions were only counted correct when all phases
present in a region were correctly predicted. If a
critical value of zero was used, 86.9–95.6% of
data were classified correctly. For critical values
90.25, 86.7–95.6% of data were classified cor-
rectly and 0–2.2% of data were unclassified. With
a more rigorous critical values of 90.5, 82.3–
98.0% of data were classified correctly and 2.2–
6.6% data were unclassified. Increasing the critical
values to 90.75 increased the unclassified per-
centage, as expected to 8.1 overall and to 24.0% at
HLB 9.0, but this increase was mainly at the
expense of correct predictions, not wrong predic-
tions (Table 2). Consequently, increasing the criti-
cal values does not improve the reliability of the
predictions. Reasons for this are unclear and re-
quire further study.

There are two different types of generalization:
interpolation and extrapolation. Interpolation ap-
plies to cases that are more or less surrounded by
nearby training data sets; everything else is ex-
trapolation. Validation samples that were close to
those in the training set were mainly correctly
classified. At HLB 11.5, 13.0, and 14.7, almost all
the mistakes were made in the small LC region
close to the ME region. The trained ANN pre-
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Fig. 6. Predicted phase triangles at HLB (a) 9.0; (b) 11.5; (c) 13.0; (d) 14.7.
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Table 2
Accuracy in ANNs predictiona

Predictionsc PredictionsdHLB PredictionsePredictionsb

C (%) W (%) U (%) C (%)W (%) U (%) C (%) W (%) U (%) C (%) W (%) U (%)

67.224.09.0 11.1 8.82.0 82.386.9 11.1 2.2 86.7 11.1 6.6
0.0 2.011.5 4.4 0.0 95.6 4.4 0.0 95.6 0.0 2.0 98.098.0

91.22.26.613.0 6.6 0.0 93.4 93.42.2 2.2 95.6 4.4 2.2
4.4 84.514.7 4.4 0.0 95.6 4.4 2.2 93.4 6.6 2.2 91.2 11.1
8.1 85.26.6 0.5 92.9 5.5 1.6 92.8 5.5 3.3 91.2 6.6

a C: correct; U: unclassified; W: wrong.
b Phases predicted as present if output \0; absent if output B0.
c Phases predicted as present if output \0.25; absent if B−0.25, and unclassified if −0.25B output B0.25.
d Phases predicted as present if output \0.50; absent if B−0.50; unclassified if −0.50BoutputB0.50.
e Phases predicted as present if output \0.75; absent if B−0.75; unclassified if −0.75B output B0.75.

Fig. 7. Accuracy of ANNs predictions for various critical values, (a) percentage wrong predictions at different HLB values; (b)
percentage unclassified predictions at different HLB values.

dicted both liquid crystal and microemulsion pres-
ence, although only LC was seen under micro-

scope. In addition to these wrong predictions near
the LC region errors also occurred in regions well
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removed from the training data. The sampling
strategy provided no data near the SML and
PSMO apexes (Fig. 2) resulting in errors in these
regions. Additionally, the phase diagram at HLB
9.0 does not contain either LC or ME regions,
which may then explain the higher percentage of
wrong and unclassified data at this HLB. At HLB
9.0 the trained ANN predicted the presence of a
small LC region and in some cases the presence of
w/o EM in addition to o/w EM when only o/w
EM was detected experimentally.

Narrowing the criterion of classification had
little influence on the number of the wrongly
classified data but increased the percentage of
unclassified data. Nevertheless the mean percent-
age success calculated over the validation data is
very encouraging (Fig. 7), given that only about
15% of the tetrahedron was sampled.

4. Conclusion

The results of the present study show that
successful prediction of phase behaviour of four
component systems is possible with an optimized
ANNs model structure using a range of three
inputs only. In addition, the training process re-
quired a relatively small number (:15% of the
sample space) of experimental data sets for train-
ing and testing. Detailed experimental data were
gathered from several ‘slices’ within a tetrahedron
region and after training. The ANNs was reason-
ably successful in predicting other regions of that
tetrahedron. The reliability of the predictions was
not improved by changing the critical values for
classification. Further work is required to investi-
gate how the reliability of prediction is influenced

by the sampling strategy (i.e. fraction of the tetra-
hedron space sampled and the distribution of
samples) and the critical values used for
classification.

Analyzing 180 validation points yielded an av-
erage of 90.5% correct answers, 3.4% unclassified
and only 6.1% incorrect predictions. This low
error rate suggests that a trained ANNs would be
helpful in predicting the phase behavior of quater-
nary systems with less experimental effort.
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